A Morphological Analyzer for Wolof using Finite-State Techniques

Cheikh Bamba Dione

Department of Linguistic – Faculty of Humanities University of Bergen

Colloquium on African Languages and Linguistics November 22, 2011

CLARA

Outline

Generalities on Wolof Morphology

Nominal Morphology Verbal Morphology

Wolof Morphological Analyser

Word Formation
Phonological and Orthographical Alternation
Evaluation

The Wolof Language

Salient typological features of Wolof:

- large number of phonemes (ca. 54 phonemes: 15 vowels, 39 consonants (stops,fricatives,nasal divided ⇒ simple vs. strong)
- Wolof has ten canonical noun classes: 8 singular (-b-, -g-, -j-, -k-, -l-, -m-, -s-, -w-), 2 plural (ñ, y). Additionally, 3 special classes (f-, n-, c-) for locative, manner and prepositional indexes
- Focus in Wolof is marked morphologically by means of focus markers
- A complex system of verb suffixes coding valency changes
- Wolof is a clitic language: subject pronouns and agreement markers, object and locative clitics, imperfective markers are all clitics
- Absence of tone
- No passive: passive-similar phenomena are expressed as 1) medio-passive or 2) active constructions with impersonal 3PL subject
- No grammatical category for ADJ / no morphological case in Wolof / no gender-specific (pro)nouns

A word in Wolof consists of stem + 1 or more affixes

- · Affixes (prefix, suffix, infix, no circumfix) may contribute to the
 - syntactical meaning (tense, aspect, mood, subject, object)
 - lexical meaning (iterative, inversive,..)
- Nominal Morphology:
 - 1 Noun inflection: generally simple
 - Noun derivation: complex ⇒ compounding (noun-noun, verb-verb, noun-verb, verb-noun, etc. may use ideophones) and reduplication
- Verbal Morphology: agglutinative
 - 1 Verb inflection carried out by inflectional elements: Wolof verbs do not inflect (except few cases: past, conditional and negation)
 - ② Verbal derivation: very complex ⇒ uses a huge number of verbal suffixes

Wolof Nominal Morphology

Nominal Inflection

Nouns in Wolof are essentially inflected for Genitive (optionally followed by the nominal class), and Possessive 3rd person

(1) Kër-am g-a mel ni kër-u-g buur. house-POSS.3SG CL-DIST liken COMPAR houseG-R-CLG kingB 'His house looks like a king's house.'

Nominal derivation can occur in form of:

- Suffixation: 15 Suffixes, not always productive ⇒ seet "look" seet-u "mirror"
- Prefixation: ca. 7 prefixes aji, al, ja, ma, maa, nja, waa
- Consonant gradation/mutation (sometime predictable: f,s,d,g,j \Rightarrow p,c,nd, ng, nj)
- Combination of prefixation, suffixation and consonant mutation
- Compound:
 - Wolof has endocentric (ndoxum taw "rain water") and exocentric (gaynde-géej "shark") compounds as well.
 - Three forms of compounding: nominal, verbal or adverbial. The nominal compounding is the most frequently used form.
- Reduplication in Wolof is always total and
 - can be used for both noun and verb derivation
 - uses ideophonic stem (marginale derivation); ñukk ⇒ reduplicated
 ⇒ ñukk-ñukk "short steps run"
 - uses name of locations (i.e. ndar ⇒ ndar-ndar)

Wolof Verbal Morphology

Verbal Inflection

- verb base form (infinitive, PRES, FUT): Null morphem ⇒ lekk-∅ "to eat"
- remote vs. habitual past: -oon, -aan ⇒ lekk-aan "used to eat"
- temporal conditional/perfect: ⇒ su lekk-ee "as/if s/he eats/has eaten"
- imperative:-al, -leen ⇒ lekk-al "eat!"
- Impersonal: presens and past -ees, -eesoon
- Negation: simple, not yet, anymore + subject agreement ⇒ lekk-at-u-ma
 "I don't eat anymore"

Wolof Verbal Morphology

Verbal Inflection

- verb base form (infinitive, PRES, FUT): Null morphem ⇒ lekk-∅ "to eat"
- remote vs. habitual past: -oon, -aan ⇒ lekk-aan "used to eat"
- temporal conditional/perfect: ⇒ su lekk-ee "as/if s/he eats/has eaten"
- imperative:-al, -leen ⇒ lekk-al "eat!"
- Impersonal: presens and past -ees, -eesoon
- Negation: simple, not yet, anymore + subject agreement ⇒ lekk-at-u-ma
 "I don't eat anymore"

Verbal Derivation: regular or marginal

- 1 regular verb derivation
 - denominal verb derivation starts from a nominal root
 - deverbal verb derivation starts from a verbal root
 - ambivalente verb derivation starts from a nominal/verbal root
- ② marginal verb derivation starts from an ideophonic root ⇒ nun-ideophonic-stem + i-verbalizer ⇒ nunnun-i "to whisper"

Wolof Verbal Morphology

Linear ordering of Wolof verbal suffixes in verb derivation

I	Ш	Ш	IV	V	VI	VII	VIII	IX	Χ	ΧI	XII
ar	e ₁	u	adi	andoo	aale	iз	al_1	le	e_2	al_2	aat
	i ₁	00	antu			si		lu			ati
	ali		ante								
	anti										
	andi										
	at										
	aan										
	i ₂										

Table: Template of verbal suffixes used in Wolof verb derivation

ar: effort, e_1 : verbalizer, i_1 : inversive , i_2 : vebalizer , ali: completive, anti: corrective, andi: meanwhile at: intensive, aan: discontinuative, u:mediopassive, oo: together, adi: privative, antu: depreciative, ante: reciprocal, andoo: collective, aale: associative, i_3 : go , si: come, al_1 : causative, le: Participative, lu: causative, e_2 : locative / instrumental, al_2 : applicative, aat: iterative, ati: reiterative

Wolof Morphology: Pronouns

- Strong pronouns are full-fledged words: occur in positions otherwise open to lexical DP (dislocated, object focus, nonargument and P-governed), cannot occur as direct objects.
- Wolof object and locative clitics (OLCs) are used to mark 1) object, person, instrument or 2) locative, prepositional, distance.
- Subject pronouns have a syntactic distribution similar to their non-clitic counterparts (e.g. is predictable as they are specified for nominative case).

	Strong forms	Weak forms		
		subject pronouns	object pronouns & loc.	
1sg	man	ma	ma	
2sg	yow	nga	la	
3sg	moom	mu	ko	
1pl	nun	nu	nu	
2pl	yeen	ngeen	leen	
3pl	ñoom	ñu	leen	
LOC - prep prox/dist	cii/caa		ci/ca	
LOC distance - prox/dist	fii/faa		fi/fa	

Table: Wolof Person and Locative Markers

Wolof Morphology: Inflectional Markers

- Depending on the construction, subject markers undergo morphological attachment to their left or to their right.
- Right-attached subject markers (i.e. nu-a) are not proclitics. In sentence-initial position, they bear default initial stress, and undergo phonological coalescence with their rightward context.
- Left-attached subject markers (i.e. la-nu) are unstressed.
- **Subject agreement:** subject markers are amalgam of PERS, NUM, MOOD, ASP, POL and FOCUS. All paradigms distinguish first, 2nd, 3rd person pl and sg.
- Verbal agreement is for person and number of the subject.

	1Sg	2Sg	3Sg	1Pl	2PI	3PI
SuF	ma-a	ya-a	mu-a	nu-a	yeen-a	ñu-a
NSuF	la-a	nga	la-∅	la- nu	ngeen	la-ñu
VF	da-ma	da-nga	da-fa	da- nu	da-ngeen	da-ñu
Neut/Perf	na-a	nga	na	na-nu	ngeen	na-ñu
Neut/Impf	di-naa	di-nga	di-na	di-na- nu	di-ngeen	di-na-ñu
Opt.	na-a	na-nga	na-Ø	na- nu	na-ngeen	na-ñu
Opt. Neg.	bu-ma	bul	bu-mu	bu- пи	bu-leen	bu-ñu

Table: Subject agreement markers in Wolof

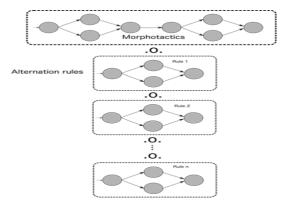
Wolof FST System

FST morphological analysis using Xerox finite state tool (fst)

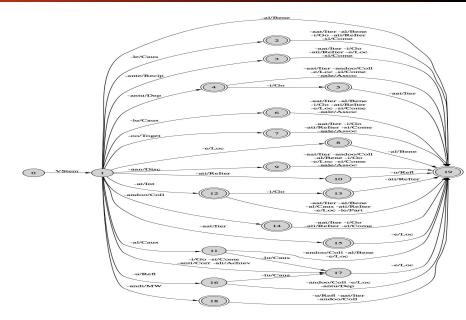
- two-level morphology: 1) a lower surface and 2) an upper or lexical level
- Input: surface form is transformed into a lexical form (stem + morphosyntactic features)
- 3 Use of intermediate level
- The tool handles the input in both directions: analysis and generation

fecceekuwaatoon

Example


Cheikh Bamba Dione

Surface:


Morphological components

The components of the Wolof FST:

- 1 Lexicon: contains verbal and nominal stems, ideophone and closed classes
 - Statistics: common nouns (3800), proper nouns (1000), verbs (3500)
- 2 Morphotactics as **finite-state network** encoding the legal morphem. combination
- 3 Phonotactics as **finite-state transducers** describing the rules alternation
- 4 Composition of lexicon + phonotact. into a single network \Rightarrow lex. transducer

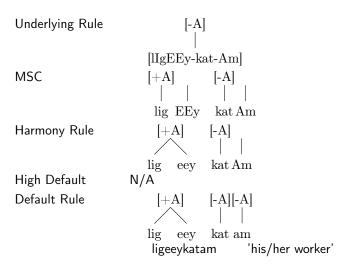
Finite State Machine - Wolof Verb Derivation

Architecture Of The Verb Analyzer

 'Verb': the lexical network that handles Wolof verbs is built up as a sequence of transducers

define Verb

```
VerbDerivationFSM
.o. vowelHarmony
                      # R10
.o. glideInsertion # R1 Word Initial
.o. deleteRootVowel
                      # R11
.o. inversiveRule
                      # R5, R2, R4, R3
                      # R14 'k' for medio-passive
.o. consonEpenthesis1
.o. consonEpenthesis2
                      # R15 'i' for GO
.o. degemination
                      # R7
.o. deleteSuffixVowel
                      # R8
.o. glideInsertion2
                      # R6 stem final
.o. deleteVowel
                      # R12 stem final
.o. vowelCoalescence
                      # R9
```

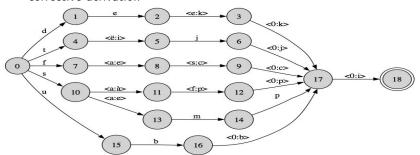

Alternation Rules

The harmony process is analyzed on the basis of four rules:

- Morpheme Structure Constraint (MSC): a high vowel in stem initial position must be associated with the [+ATR] feature
- Vowel Harmony Rule (VHR): the [+ATR] autosegment is spread from left to right to all unassociated vowel within a domain.
- High Default Rule (HDR): all non-linked high vowel have to be specified as [+ATR]
- Oefault Rule (DR): Every segment left unassociated must have the [-ATR] feature associated with it.

```
define vowelHarmony [ MSC .o. harmonyRule .o. highDefaultRule .o. defaultRule];
```

(2) IIgEEy-kat-Am 'his/her worker'


Inversive Formation

- **①** Gemination of the final consonant (GFC): $ub \Rightarrow ubbi$ 'close/open'
- **2** Mutation and GFC: $saf \Rightarrow sappi$ 'to be tasty/to lose taste'
- **3** Vowel gradation and GFC: $t\ddot{e}j \Rightarrow t\ddot{i}j\ddot{j}i$ 'close/open'
- **4** Vowel gradation + mutation and GFC: fas ⇒ fecci 'tie/untie'
- **⑤** Vowel shortening + GFC: *suul* ⇒ *sulli* 'bury/exhume'
- **6** Vowel shortening + GFC: *roof* ⇒ *roppi* 'insert/extract'
- ⑦ Vowel gradation and shortening + mutation and GFC: roof ⇒ ruppi 'insert/extract'
- 8 Vowel shortening without GFC: $muur \Rightarrow muri$ 'cover/uncover'
- O Vowel gradation and shortening without GFC: yeew ⇒ yiwi 'tie/untie'
- Vowel gradation (word ending with geminate or prenasal): samp ⇒ sempi 'plant/plant out'
- No vowel or consonant modification: wekk ⇒ wekki 'hang up/out'
- Vowel shortening + consonant insertion: dee ⇒ dekki 'die/revive'

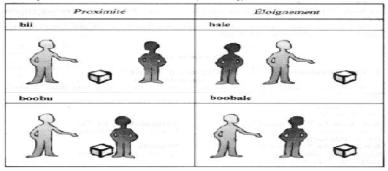
The Finite-State Transducer for the Inversive

Regularities for inversive, corrective and completive formation

- R2: mutation of the final consonant: the weak consonant becomes strong (e.g gemination process: -f→ -pp, -s→-cc, -r→-dd, 0→-kk)
- R3: inside of a root a long vowel should be short if it occurs before a strong consonant (e.g. geminate, prenasal)
- R4: vowel mutation $\ddot{e}\rightarrow i$, $\acute{o}\rightarrow u$, $a\rightarrow \grave{a}$ (strong consonant)
- R5: vowel mutation: a→e in case of inversive , a→o in case of corrective derivation

The Transducer for Inversive as FST Rule

The lexical network that handles the inversive derivation in Wolof


```
define Inversive
                                   VerbRoot o vowelGradationHorizontale
                                   .o. fortitionFinalCons .o. geminationFinalCons
                                   .o. vowelGradationVerticale .o. vowelShortening
                                   InversiveSuffix:
define vowelGradHorizont
                                   [ a \rightarrow e \parallel [ Cons | .#. ] StrongCons
                                      .o. [ a→o || Nasal Cons .#.
                                      .o. a \rightarrow e \parallel Fricatives Cons .#.
                                   ];
[f→pp.s→cc.r→dd.s→a|| .#.]:
define fortitionFinCons
                                   [ b \rightarrow b b, c \rightarrow c c, d \rightarrow d d, ... || [ \SimpleCons | .#. ] .#. ];
define geminationFinCons
                                   [\ddot{e}\rightarrow i, \acute{o}\rightarrow u, a\rightarrow \grave{a} || [Cons | .#. ] StrongCons];
define vowelGradVert
                                   [ aa \rightarrow \grave{a}, ee \rightarrow e, ... , uu \rightarrow u || StrongCons ];
define VowelShort
```

Long-distance Dependencies Using Flag Diacritics

- Flag diacritics are used to control long-distance dependencies (e.g. demonstratives) and constrain overgeneration in the network
- Recognized and applied at runtime ⇒ avoid size explosions
- Flag Diacritics are resolved before composing the lexical network

Wolof Demonstrative

Wolof demonstrative specifier encode deixis (proximal/distal) and reference [referent, distance to speaker/hearer])

	De	eixis		Reference					
prox	proximal distal		proximal distal						
Cii	Cile	Cee	Cale	CooCii	CooCu	CooCule	CooCa	CooCale	CooCee

Table: Wolof Demonstratives: 130 forms

Categories handled by the morphological analyzer

- Nouns (N): common, proper, inflected and derived
- Verbs (V): inflected and derived V (denominal, deverbal, marginal)
- 3 Auxiliar (AUX): inflected for aspect/tense
- Inflectional markers (INFL): subject/verb/complement focus, optative, aspect, imperative
- 6 Clitics (CI): Subject agreement markers (Cl_{subj}), tense (Cl_{tns}), object and locative (Cl_{obj})/(Cl_{loc})
- 6 Pronouns (PRON): personal, subject pronouns, relative, free relative, quantitative, locative, demonstrative, interrogatives, possessive
- Specifiers: Determiners (def, indef, rel, int), Demons (including deixis and reference), quantifiers, numeral
- 8 Adverbs (ADV): temporal, locative, manner, standard.
- 9 Complementizers (COMP): standard, interrogative

Evaluating The Wolof Morphological Analyzer

- The evaluation is performed using the Xerox lookup utility, a runtime program that applies pre-compiled transducers to look up words.
- 4 different strategies: the single normal FST (strategy 0), capitalization (strategy1), word normalization (strategy2) and allowing the relaxation of accentuation/vowel harmony (strategy3)
- Achieved accuracy: 79.55%

Not found: 805 words

Foreign words: 175; Proper nouns: 63; spelling errors: 60

Strategy	Frequency	Accuracy		
strategy 0	8463 times	70.51%		
strategy 1	1000 times	8.33%		
strategy 2	6 times	0.05%		
strategy 3	79 times	0.66%		
not found:	2455 times 20.45%			
corpus size:	12033 tokens			

Table: Lookup accuracy scores on the Wolof Wikipedia