A Computational Approach to Identifying Macro-Areas in Africa

Harald Hammarstrom
Max Planck Institute for the Science of Human History
Jena

17 June 2016, Berlin
Areas of Typological Similarity in Africa

It has been observed since long that the languages of the African continent exhibit typological similarities that are geographically conditioned.

- Some researchers have distilled large-scale convergence areas (e.g., Güldemann 2008, Heine 1976, 2011, Segerer 2015)
- These areas may reflect patterns of social interaction, ethnographic similarities, geographical conduits or barriers (mountains, rivers), language family expansions, ...
Heine 1976:90’s Distribution of Basic Types

MAP 1
Distribution of Basic Types
Güldemann 2010:576’s African Macro-Areas
Clements and Rialland 2008:37’s African Macro-Areas
Delimiting Macro-Areas

- Even the largest previous studies ultimately rely on eyeball inspection of features plotted on a map to define the areas.
- Today we will compare with a computerized approach that

 Given geolocated language data as input delineates the area(s) with the greatest homogeneity

- Computational approaches have the advantage of containing no subjectivity, but, on the other hand, make some simplifying assumptions.
- Previous computational work typically searches for areal with some regularity in shape (circles, rectangles, size) and tests for geographical coherence (Daumé 2009, Michael et al. 2014, Muysken et al. 2015).
- Probably, a closer approximation of what humans are doing are captured by series of isogloss lines.
An isogloss is the geographical boundary of a certain linguistic feature, ... such as the pronunciation of a vowel, the meaning of a word, or use of some syntactic feature (Wikipedia 8 June 2010)

- Widely used in dialectology
- Example, pin/pen merger as of Labov (1997):

http://www.ling.upenn.edu/phono_atlas/maps/Map3.html
Approaches to Isogloss Lines

There appears to be no objective definition of an isogloss line, let alone an automated procedure for drawing one.

- Dialectologists today draw isogloss lines by hand, based on intuition (p.c. Bert Vaux 2010)
- Today we will use a automated procedure which tries to maximize the homogeneity on either side of the line (Hammarström forthc.)
Problem Setting #1: Input

Given:

- 2D grid map with
- rings ("red") and crosses ("green") and empty positions
Problem Setting #2: “Line” Assumptions

Assumptions about a “line”:

- A line is not necessarily a straight line
- But, either
 - Runs from the west end to the east end on the map, crossing each column at exactly once OR
 - Runs from the north end to the south end on the map, crossing each row at exactly once

- Legal
- NOT Legal
Definition of the Optimal Isogloss Line

Some straightforward alternatives

Absolute-Optimal The line that maximizes the total number of correctly classified points

Proportion-Optimal The line that maximizes the proportion of correctly classified points to the total number of points, on both sides

Homogeneity-Optimal The line that minimizes the weighted average entropy of the point distribution on either side (this is a generalization of proportion-optimality to non-binary maps)
Optimality: Example

Absolute-Optimal: The max total number of correctly classified points

i) $2 + 2 = 4$ ii) $3 + 2 = 5$

Proportion-Optimal: The max proportion of correctly classified points to the total number of points, both sides

i) $2/3 + 2/3$ ii) $3/3 + 2/3$

Homogeneity-Optimal: The minimal weighted average entropy of the point distribution on either side

i) $3 \cdot H\left(\frac{2}{3}, \frac{1}{3}\right) + 3 \cdot H\left(\frac{2}{3}, \frac{1}{3}\right) = 2.754 + 2.754 = 5.51$

ii) $4 \cdot H\left(\frac{3}{4}, \frac{1}{4}\right) + 2 \cdot H\left(\frac{2}{2}\right) = 3.243 + 0.0 = 3.25$

Line (ii) is better in all three cases of this example
Data: Three Databases

- **Constituent Order**: Basic constituent order in the transitive clause for 1431 spoken African languages (Own Database 2016)
- **Phonology**: Segmental inventories from 706 spoken African languages (Moran et al. 2015)
- **Morphosyntax**: 202 features from morphosyntax for 201 spoken African languages (Database developed at SHH Jena)
Suppose we draw an arbitrary line.
Suppose we draw an arbitrary line. Its homogeneity is 1721.3.

<table>
<thead>
<tr>
<th></th>
<th>Under</th>
<th>Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVO</td>
<td>663</td>
<td>286</td>
</tr>
<tr>
<td>SOV</td>
<td>177</td>
<td>244</td>
</tr>
<tr>
<td>VSO</td>
<td>7</td>
<td>74</td>
</tr>
<tr>
<td>VOS</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>OVS</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>NODOM</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>H</td>
<td>0.92</td>
<td>1.51</td>
</tr>
<tr>
<td>#</td>
<td>861</td>
<td>613</td>
</tr>
</tbody>
</table>
Suppose I let the computer find the *optimal* east-west line.
Constituent Order: East-West Line

- Suppose I let the computer find the *optimal* east-west line.
- Its homogeneity is 1643.4

<table>
<thead>
<tr>
<th></th>
<th>Under</th>
<th>Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVO</td>
<td>1036</td>
<td>14</td>
</tr>
<tr>
<td>SOV</td>
<td>320</td>
<td>1</td>
</tr>
<tr>
<td>VSO</td>
<td>54</td>
<td>27</td>
</tr>
<tr>
<td>VOS</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>OVS</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>NODOM</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>1.12</td>
<td>1.07</td>
</tr>
<tr>
<td>#</td>
<td>1433</td>
<td>42</td>
</tr>
</tbody>
</table>
Suppose I let the computer find the *optimal* north-south line.
Constituent Order: North-South Line

Suppose I let the computer find the optimal north-south line.

Its homogeneity is 1662.6

<table>
<thead>
<tr>
<th></th>
<th>Under</th>
<th>Over</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVO</td>
<td>957</td>
<td>94</td>
</tr>
<tr>
<td>SOV</td>
<td>234</td>
<td>87</td>
</tr>
<tr>
<td>VSO</td>
<td>72</td>
<td>9</td>
</tr>
<tr>
<td>VOS</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>OVS</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>NODOM</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1.07</td>
<td>1.49</td>
</tr>
<tr>
<td>#</td>
<td>1275</td>
<td>201</td>
</tr>
</tbody>
</table>
So the east-west line was the most homogeneous.

Now we draw the next optimal line, given the first one!
We now obtain areas

With arbitrary precision, as we draw further lines
GB044: Can plural number be marked on the noun itself?
GB031: Is there a dual (or unit augmented) in addition to a plural (or augmented) number category in pronouns?
GB030: Is there a gender distinction in 3rd person pronouns (or demonstratives, if no 3rd person pronouns)?
GB025: What is the order of demonstrative and noun in the NP?
GB030: Is there a gender distinction in 3rd person pronouns?
Grambank: **All** 202 features at the same time line #1

We start to recognize this contour
Grambank: All 202 features at the same time line #2

Difficult to make sense of
Does the language have /s/?
Does the language have /ã/?
Does the language have /kp/?

PHOIBLE: 1373 (!) Segmental Features (706 Languages)
GB025: Does the language have /s/?

Hammarstrom
Macro-Areas Africa
17 June 2016, Berlin
Conclusions

- Presented one automated technique for dividing geolocated data into areas with resemblance to what humans (aim to) do
- Unfortunately, difficult to make sense of isogloss lines which combine more than one or a few features
- Ideas on how to weigh/combine features greatly appreciated
- More work is needed before a serious comparison with human area-dividing can be done
Thank you

Phenomena in Northern Sub-Saharan Africa (8th World Congress of African Linguistics), August 20-24, 2015, Kyoto, Japan.