Computational experiments in Adamawa sub-classification

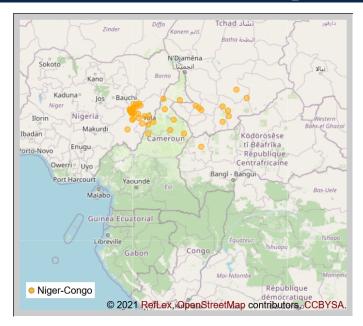
Harald Hammarström Guillaume Segerer

6 Nov 2021

- Computational Subgrouping and Reconstruction
 - Fully automatic, bottom-up and transparent
 - Does not supersede manual work, hopefully assists it
- Adamawa (Boyd 1989, Güldemann 2018, Kleinewillinghöfer 2014a, 2020)
 - About a dozen microgroups
 - Possible internal relationships largely undetermined
 - NB: This exercise sees only Adamawa, it cannot prove or disprove the unity of Adamawa or its place(s) within Niger-Congo

Data from RefLex (Segerer 2016)

←


O 🗞 🕫 www.re	.cnrs.fr/Africa/index.php?module=reconstruction		E 🏠	🗢 🛃 III 🗉 😐 😫
	on Database	\$	hhamma U	
Data Reconstruction Datasets - Search in dataset Cognate	/ordlist Management Statistics I s - Search in cognate sets - Algoments - Search in algoments	Discussion		
Natural / Public / Own / Shared	🔍 🖄 🛛 Dataset 🍘 😏 🏷 🖙 🖉 🖓 🥊	Sources 📷 🕕 👎 💙	A	ctive elements
Browse datasets	Sources list from dataset Adamawa-HH			
%ABCDEFGHIJKLMNOPQRSTUVWX				
Datasets [1]: 🛒 📆 🕕 📜 🍞		day de Bouna	(2059 recs) 🦈	^
Adamawa-HH 69 source		kare	(1537 recs) 🧐	
	348. Ruelland 1988	tupuri	(4417 recs) 🦈	
Select source information to display	363. Pairault 1969	kùláál (Iro)	(980 recs) 🧐	
	501. BCCW1 1968	longuda [Long]	(39 recs) 🦈	
	502. BCCW1 1968	vingulum [Ying]	(33 recs) 🦈	
Tools panel	503. BCCW1 1968	patapori [Patp]	(58 recs) 🦈	
Vowels Count Consonants Count	504. BCCW1 1968	mumuye (Mumu)	(49 recs) 🦈	
Tones Count	698. BCCW2 1973	longuda [Long]	(42 recs) 🦈	
Homophony Search for borrowing	699. BCCW2 1973	vingulum [Ying]	(33 recs) 🦈	
Dealer to borrowing	700 BCCW2 1973	patapori [Patp]	(60 recs) 🦈	
	701. BCCW2 1973	mumuye (Mumu)	(52 recs) 🦈	
	959. Kraft 1981 (vol. III)	Yinailum	(436 recs) 🦈	
	1256. Ulfers 2007	Karang	(3366 recs) 🧐	
	1273. Shimizu 1983	Mumuye (Zing)	(1762 recs) 🦻	
	1274. Raen 1985	Pere	(2389 recs) 🦻	
	1275. Fabre 2001	Samba leko	(1834 recs) 🦈	
	1276. Jungraithmayr 1968	Longuda	(88 recs) 🦈	
	1277 Jungraithmayr 1968	Waja	(86 recs) 🦈	
	1278. Jungraithmayr 1968	Tula	(136 recs) 🦻	
	1279. Jungraithmavr 1968	Cham	(99 recs) 🦻	
	1280, Jungraithmavr 1968	Dadiva	(102 recs) 🦻	

43 Adamawa doculects

Lexical data with unified translation

Language	# items	Language	# items	Language	# items
dadiya	99	goundo	225	mono	794
tula	1033	kim	226	longuda	135
waja	72	mumuye	992	tiba	602
awak	105	gimnime	1262	burak	397
dijim-bwilim	75	momi	1221	loo	306
gula iro	603	samba leko	1439	mághdì	307
bolgo	649	dii (yag dii)	2031	mak	313
noy	48	peere	1705	kyak	312
niellim	48	yendang	345	moo	308
tunia	401	bali	339	leelau	308
kam	1254	yoti	345	dza	309
fali sud	1969	kpasam	343	mingang doso	312
yingilum	458	karang	1689	tha	305
day	1397	tupuri	1133		
besme	226	kare	912		

43 Adamawa doculects: Map

13 Adamawa "Microgroups"

13 of up to 17 microgroups (Kleinewillinghöfer 2020:223) [Bena-Mboi, Baa, Nimbari, Gueve-Duli not featured]

Language	# items	Language	# items	Language	# items
dadiya	99	goundo	225	mono	794
tula	1033	kim	226	longuda	135
waja	72	mumuye	992	tiba	602
awak	105	gimnime	1262	burak	397
dijim-bwilim	75	momi	1221	loo	306
gula iro	603	samba leko	1439	mághdì	307
bolgo	649	dii (yag dii)	2031	mak	313
noy	48	peere	1705	kyak	312
niellim	48	yendang	345	moo	308
tunia	401	bali	339	leelau	308
kam	1254	yoti	345	dza	309
fali sud	1969	kpasam	343	mingang doso	312
yingilum	458	karang	1689	tha	305
day	1397	tupuri	1133		
besme	226	kare	912		

Data Snapshot Example

🛂 Mail - harald.h 🔹 🖪 Darfur movie 7	🗣 Google Transia 🛛 📘 maja_Bi	Source Majmū'ah-i maqāli Results	for 'bahasa 🗧 Supp1_Materia 🛛	Adamawa Lanj 🛛 🕌 Reflex - Refere	🞽 reflex.cnrs.ft/o: 🛛 westermann_tu	× +	- 0	×
$\leftarrow \ \rightarrow \ \mathbf{C}$	1 file:///C:/Python38/westerma	ann_tula-waja1.html			\$	9 🗶 lin	🗉 😐 🖠	=
Language Items dadiya 99 tula 1033 waja 72 awak 105 dijim-bwilim 75 Total 1105 Details								^
Show 10 v entries Item 0	awak 🔶	dadiya 🕴	dijim-bwilim 🔶	tula 🔶	waja 🔶	Search:	# lgs	•
arbre	tī/tī/pūtó	tīyā/tīyā/tin	riy/áŋ/rī:/té	tīyāŋ/tī:nī	sóū/sóūri	5		
bouche	រារ	រូបរិម្ភភ្នំ	pi/pùni	yī/yī:nī	niyá/ú/niyá/ndi	5		
cheval	tówá	tōwà/tōwà/tin	gārmā/r/gārmā/tē	t*ē/t*ētī	gwéré/gwiyándi	5		
cheveu	yítěhů	yitin	yir	rit.	kó/ó/kö:/kěnà	5		
dent	nüŋún	nüŋùn	núŋ/ún/nūŋ/té	nū:m	n*i/n*iyéngé	5		
eau	mộể	mặệ	gāmģ	m*è	gündü	5		
enfant	b*é/näbīyāŋ	b*é/sàn/bê:/ti	bū/ē/bū/túbī	b*é/b*ésún	b*äl/bùyá/k*árá	5		
front	dəgādü	té:kōgă	ká/k/ká/té	tikābū/tīnīkābīnī	nátů/nátů/ndí	5		
fumée	kūdú	yū:lāň	yöàn	ywàn	si:/má	5		
homme	bā/ré/bā/tém	nā/l/nā/b	ni:/nā/bė	k*ārtā	nér/5/nůwá	5		
Search Item Showing 1 to 10 of 1,105 entries	Search awak	Search dadiya	Search dijim-bwilim	Search tula Previ	Search waja ous 1 2 3 4	Search #	lgs 111 Net	ct v

Automatic Reconstruction

- 1. Start from parallel wordlists
- 2. Shallow cognate detection
- 3. Find shallowest subgroup
- 4. Sound change extraction for this subgroup
- 5. Reconstruct proto-language for this subgroup
- 6. Repeat

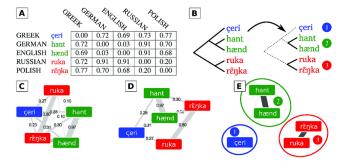
Somewhat novel (unpublished) methods for several steps, still under development ...

Cognate Detection

Given meaning-aligned wordlists judge which word-forms are historically related

English	Turkish	Persian	Kurdish	Arabic	Hindi	Swedish
Wлn	bir	yek	yek	wæ:ħed	ek	en
tu:	iki	do	dû	etne:n	do:	tvo:
θri	yt∫	se	sê	tælæ:tæ	ti:n	tre:
neim	isim/ad	esm	naw	?esm	na:m	namn
nous	burun		lût	mænæxi:r	na:k	neisa
watər	su	a:b	aw	majja	pa:ni:	vaten
hed	ba∫/ kafa	sar	ser	rais	sar	h u :vod
naɪt	gedze	∫ab	ſev	le:læ	ra:tri:	nat
boun	kemik		hestî	የadm	haddi:	be:n
nıu:	yeni	naw/ta:ze	nwê	gedi:d	naya:	ny
wi:	biz	ma:	ême	eħnæ	ham	vi

For today, let us conveniently ignore some complications


- Non-monomorphemic forms
- Meaning shift

• .

Cognate Detection: State-of-the-Art

Nearly all past work in automated cognate detection (e.g., List et al. 2018, List 2014, Kondrak 2009, Steiner et al. 2011, List et al. 2017, St Arnaud et al. 2017 and references therein)

- 1. Align words phonetically
- 2. Compute similarity of aligned words
- 3. Group cognates that exceed a certain similarity threshold

Thresholds in Cognate Identification

Require tuning a threshold to cut a similarity-based score into a yes/no cognate decision

Dataset	Words	Conc.	Lang.	Cog.	Div.
Austronesian (Greenhill et al., 2008) [1]	4358	210	20	2864	0.64
Bai (Wang, 2006) [27]	1028	110	9	285	0.19
Chinese (Hóu, 2004) [28]	2789	140	15	1189	0.40
IndoEuropean (Dunn, 2012) [2]	4393	207	20	1777	0.38
Japanese (Hattori, 1973) [29]	1986	200	10	460	0.15
ObUgrian (Zhivlov, 2011) [30]	2055	110	21	242	0.07
TOTAL	16609	977	95	6817	0.30

doi:10.1371/journal.pone.0170046.t002

"The key parameter we need to estimate is the best thresholds for cognate identification in some of the methods" (List et al. 2017:3)

The Threshold is the Problem

- The threshold can either be human-tuned or pre-trained with respect to some supervision/gold standard data set
- Cognate detection and evaluation is typically done on data sets which include both shallow cognates and deep cognates
 - Shallow cognate: German 'fünf' vs English 'five'
 - Deep cognate: Prasuni 'wuču' vs Sardinian 'chimbe'
- Dilemma
 - Strict threshold: Only shallow cognates are found
 - Loose threshold: Junk is found (along with shallow and deep cognates)

First Step Cognate Detection (FSCD)

- Suppose you do not already know
 - The relevant sound-shifts
 - The classificatory tree of the input languages

Let's call this variant First Step Cognate Detection

• For a solution to be possible (whether for a human or machine cognate detector), one has to assume that cognates are more similar *on average* than non-cognates

$$\frac{\sum_{x \neq y \in C_i} Sim(x, y)}{|\{(x, y)| x \neq y \in C_i\}|} > \frac{\sum_{x \neq y \notin C_i} Sim(x, y)}{|\{(x, y)| x \neq y \notin C_i\}|}$$

Let's call this property the Similarity Criterion

- Shallow first step cognate detection
 - Can be done
 - Can be done without a threshold
 - Shallow cognate = obeys the similary criterion
- Deep first step cognate detection
 - Cannot be done
 - (Deep cognate detection must thus be done in several steps or with more information)
 - Deep cognate = does not obey the similary criterion

Threshold-Free FSCD

• Thanks to the similarity criterion, there exists an optimization solution that maximizes

$$\frac{\sum_{x \neq y \in C_i} Sim(x, y)}{|\{(x, y) | x \neq y \in C_i\}|} - \frac{\sum_{x \neq y \notin C_i} Sim(x, y)}{|\{(x, y) | x \neq y \notin C_i\}|}$$

- The intuition is to contrast the cost of judging something cognate (penalty: dissimilarity) and judging something not cognate (penalty: similarity)
- Afaik, the only cognate detection paper in the literature that exploits this dichotomy is Ellison (2007)

This formulation is restricted to the case with exactly two input languages

The Present Approach

- 1. Input: Set of *n* word forms with the same meaning
- 2. Pairwise Similarity: Calculate the pairwise similarity between each pair of the *n* words using a suitable similarity measure S(x, y)
- 3. Significance Similarity: Measure the significance SS(x, y) of the similarity S(x, y) by comparing S(x, y) to S(x, z) for random strings z of the same length
- 4. Divide the *n* forms into subsets such that the average SS(x, y) internally in a cognate set + average 1 SS(x, y) between non-cognates is maximized (= correlation clustering)

Notes on Form Similarity

- Form similarity is calculated with Edit Distance using phonetically informed weights (Mortensen et al. 2016)
- Tones are represented as separate phonemes (following their host)
 - Loo 'marcher' *wēlé* is represented as *w e* ⁻ *l e* [']
- Form similarity (and cognacy) is assessed separately for alternative forms for the same meaning
- Form similarity (and cognacy) is assessed separately for polymorphemic forms marked as such in the input (space or dash)
- Meaning change conveniently ignored

Example Phonetic Distances

IPA a b c d c f g b i j k i m b o p r s t w w ~ ŋ ∞ ñ w 5 s - 0.9710971097109710971097109710971097109710	0.887 0.575 0.2 0.771 0.881 0.8	077 0.250 275 0.977	پر (a o ^
	0.887 0.575 0.2 0.771 0.881 0.8	2750.977	0.9770.97	70.9770.977
0.077 0.8810.8850.8820.5750.8710.8800.8300.8500.8020.8440.8570.8500.8500.8500.8710.8870.9500.8760.9500.8770.850.8750.8500.8750.875	0.771 0.881 0.81			
			0.8570.87	10.9500.950
b 0.9770.881 - 0.7770.7680.8730.3360.7810.8160.8810.8520.7850.8220.6560.8070.8890.2660.8300.7870.7710.8890.8590.8810.9770.8200.8810.8070.8810.2660.889				
c 0.9770.8850.777 - 0.7790.8770.7910.7620.8050.8690.8320.7580.8340.8160.8180.8930.7730.8340.7910.7750.8930.8550.8850.9770.8010.8850.8180.8850.7810.893	0.783 0.885 0.81	377 0.9 77	0.6720.78	30.8890.885
d 0.977 0.883 0.768 0.779 - 0.875 0.789 0.783 0.818 0.883 0.854 0.787 0.805 0.807 0.656 0.891 0.771 0.812 0.578 0.266 0.906 0.877 0.898 0.977 0.822 0.883 0.789 0.883 0.771 0.891	0.266 0.883 0.81	3750.977	0.8140.62	50.9020.898
e 0.9770.5750.8730.8770.875 - 0.8630.8810.8220.5750.7950.8850.8360.8500.8520.7000.8770.8440.8630.8790.9500.8180.6750.9770.8570.1000.8520.6000.8770.400				
f 0.9770.8710.3360.7910.7890.863 - 0.8030.4450.8710.8420.7990.8120.8110.8280.8790.3200.8200.7700.7850.8790.8500.8710.9770.8420.8710.8280.8710.3520.879				
g 0.9770.8890.7810.7620.7830.8810.803 - 0.8160.8730.8360.2660.8380.8200.8220.8810.7850.8300.8030.7870.8810.8440.8890.9770.6560.8890.8220.8730.7850.881				
b 0.9770.8300.8160.8050.8180.8220.4450.816 - 0.8300.6720.8120.6170.7930.7950.8380.8120.6480.4450.8140.8540.5160.8460.9770.7930.8300.7950.8300.8200.838				
1 0.9770.8500.8810.8690.8830.5750.8710.8730.830 - 0.7870.8770.8440.8570.8590.9500.8850.8440.8710.8870.7000.8110.4000.9770.8500.3750.8590.8750.8850.675				
j 0.9770.8030.8520.8320.8540.7950.8420.8360.6720.500 - 0.8400.7580.8280.8300.8110.8550.7580.8420.8570.8110.7000.8030.9770.8120.8030.8300.8030.8550.811				
k 0.9770.8930.7850.7580.7870.8850.7990.2660.8120.8770.840 - 0.8420.8240.8260.8850.7810.8340.7990.7830.8850.8480.8930.9770.6720.8930.8260.8770.7890.885				
0.9770.8440.8220.8340.8050.8360.8120.8380.6170.8440.7580.842 - 0.7990.7810.8520.8260.5940.7930.8090.8670.6020.8590.9770.8140.8440.7810.8440.8260.8520.8520.8260.5940.7930.8090.8670.6020.8590.9770.8140.8440.7810.8440.8260.8520.8520.8260.5940.7930.8090.8670.6020.8590.9770.8140.8440.7810.8440.8260.8520.8520.8520.8260.5940.7930.8090.8670.6020.8590.9770.8140.8440.7810.8440.8260.8520.8520.8520.8520.8520.8520.8520.852				
m 0.9770.8570.6560.8160.8070.8500.811 0.8200.793 0.8570.8280.8240.799 - 0.7680.865 0.672 0.8070.826 0.811 0.865 0.836 0.857 0.977 0.781 0.857 0.768 0.857 0.793 0.793 0.				
n 0.9770.8590.8070.8180.6560.8520.8280.8220.7950.8590.8300.8260.7810.768 - 0.8670.8110.7890.8090.6720.8830.8540.8750.9770.3830.8590.7500.8590.8110.867				
 0.9770.9500.8890.8930.8910.7000.8790.8810.8380.9500.8110.8850.8520.8650.867 0.8930.8520.8790.8950.5750.8030.8750.9770.8570.3000.8670.4000.893 				
p 0.9770.8850.2660.7730.7710.8770.3200.7850.8120.8850.8550.7810.8260.6720.8110.893 - 0.8340.7830.7680.8930.8630.8850.9770.8240.8850.8110.8850.2810.8930.8630.8850.9770.8240.8850.8110.8850.2810.8930.8630.8850.9770.8240.8850.810.8850.885				
r 0.9770.8440.8300.8340.812.0.8440.8200.8300.6480.8440.7580.8340.5940.8070.7890.8520.834 - 0.8010.8160.8590.5700.8590.9770.8070.8520.7890.8440.8340.852				
s 0.9770.8710.7870.7910.5780.8630.7700.8030.4450.8710.8420.7990.7930.8260.8090.8790.7830.801 - 0.3120.8950.8650.8870.9770.8420.8710.8090.8710.7910.879				
0.9770.8870.7710.7750.2660.8790.7850.7870.8140.8870.7530.8090.8110.6720.8950.7680.8160.312 - 0.9100.8810.9020.9770.8260.8870.7930.8870.7750.895				
u 0.9770.9500.8890.8930.9960.9500.8790.8810.8540.7000.8110.8850.8670.8650.8830.5750.8930.8550.8950.910 - 0.7870.6600.9770.8570.5750.8830.6750.8930.275				
w 0.9770.8260.8590.8550.8770.8180.8500.8440.5160.8110.7000.8480.6020.8360.8540.8510.85630.5700.8650.8510.500 - 0.7950.9770.8200.8110.8540.8110.8630.8030 v 0.9770.9500.8810.8550.8590.6570.8710.8850.8500.8460.4000.801.8930.8590.8570.8750.8550.8510.9920.6600.795 - 0.9770.8200.8110.8540.8110.8630.8030 v 0.9770.9500.8510.8550.8590.8540.9460.9460.9400.98310.8570.8750.8550.8550.8550.8570.99250.6000.795 - 0.9770.9500.8510.5750.9500.8550.5750.9500.9500.750.9570.9500.2550.7550.9570.9500.2550.7550.9570.9500.2550.7550.9570.9500.9550.7550.9570.9500.9550.7550.9570.9500.9550.9570.957				
y 0.9770.9500.8810.8850.8980.6750.8710.8890.8460.4000.8030.8930.8590.8570.8750.8750.8850.8870.9020.6000.795 - 0.9770.8650.2750.8750.9500.8850.975 - 0.2500.9770.9770.9770.9770.9770.9770.9770.9				
 0.5500 910 57 09 10 97 09 10 97 09 10 97 09 10 97 09 10 97 09 10 97 097 097 097 097 097 097 097 11500 97 115000 97 11500 97 11500 97 11500 97 11500 97 11500 97 11500 97 1				
•				
m 0.9770.3750.x810.x850.x850.0000.8710.x890.8300.3750.8300.x930.x8440.x8570.8300.x300.x850.x520.8710.x870.5750.x8110.2750.97710.865 - 0.8590.4000.x8550.600				
■ 11300439500704704107.990532043204520452047950439043204781040607390487045104795048504795045047954795404795479540479579540479550440057954405705440570540479547954047955044005795440570547954047957954040057954050479547954047955044005795405047954504795479540405795404057954050779540540570540579540579540570540057055040057055040057705504005705504005770550400570550057055040057055040057055005705504005705504005705500500000000				
6 0.5770 8350 06310 06310 06310 06310 06350 0550 06300 8710 6840 05310 06370 06300 06310 06340 07910 0750 8840 0850 0850 0750 0840 0850 0850 0850 0850 0850 0850 08				
0.9770.6750.8890.8910.4900.8370.6750.810.6350.6550.867 0.8930.8520.8790.8950.2750.8030.5750.9770.6570.6000.8670.1000.893				
3 0.57 (0.613) 0.652 (0.623) 0.571 (0.780) 0.570 (0.520) 0.511 (0.552) 0.652 (0.630) 0.671 - 0.652 (0.522) 0.572 (0.522) 0.512 (0.530) 0.512 (0.612) 0.520 (0.522) 0.512 (
9 09770.5750.8810.8550.8830.3000.8710.8730.8270.8770.8440.8770.8590.1000.8850.8440.8710.8570.8750.810.6750.9770.8550.700.8590. = 0.8850.440				
0 9770 2750 8730 8770 875 - 0.8530 8810 822.0750 7950 8850 8300 8500 8320 4000 8770 8440 8630 8706 5750 8180 3750 9770 9570 4000 8520 3000 8770 70				
0.2500.977.0.970.97			0.9770.97	70 9770 977
				×

Example Tonal Distances

- Tones easily lost
- Tones easily exchanged for other tones
- Tones not easily exchanged for vowels or consonants (needs revision!)

Example Output Cognate Detection

🎦 Mail - haraid 🚈 💶 Darfur i	novie 💈 🎝 Google Tra	insla 🧮 maja_BiSource Maji	tü'ah-i maqali Results for 'bahasa	📑 Supp1_Materia 🛛 🚧	idamawa Lan	Reflex - Refere	reflex.cnrs.ft/cc	westermann_tul >	+	- 0	
$\leftarrow \rightarrow \circ$	☐ file:///C:/P	ython38/westermann_tula-waj	1.html				ŝ	\odot	$\underline{\ast}$	lin 🗊 😐 🥊	% =
2 Cognate Identification											
ijim-bwilim 54.4% (11a 63.5% (52	ognate sets k dadiya 65.7% (38.1/5 3.1/58) 31/57) 64.4% (40.6/6 .7/83) 65.6% (44.0/6	1105 e forms 131 176 dijim-bwilim tul 8) 54.4% (31/57) 63.5% (5 	2.7/83) 51.0% (13.8/27) 4.0/67) 36.9% (7.7/21) 0.8/72) 32.8% (7.5/23) 45.5% (23.7/52)								
etails ownload.tab ow 10 v entries Item	awak	≑ dadiva	diim-bwilim	¢ tula	4	waja		# lgs	Search:	# cognate sets	
1sg POS	m	mi	uijim-ownim	v tuta	v	waja	2	// 1gs	· 1	# cognate sets	
		j*œl/tin	¥/iI/vI/tē	s*ätū/s*ār					4		
année											
		Juni	Djøyøte				4		*		
apporter	pīté	justi	Djuyua	s*atu/s*ar békén			2		-1		
apporter arbre	pīté pūtā/tī	tin/iiya	áŋ/rī:/tê/riy			i/sóūri			1		

vām

nō

kiyilâŋ

sübi/sùbi

sówż

pòpùlòi

kùndí

käntó

attendre

barbe

blanc

boire

bon

2

2

3

2

Example Output Cognate Detection

🛂 Mail - haraldılı 🛛 💶 Darfur m	ovie 7 - 🕒 Google Transla	🗐 maja_BiSource Ma	ajmū'ah-i maqāli Results for 'bahasa	📃 Supp1_Materia 🛛 🚧 Adam	awa Lan 🛛 🦉 Reflex - Refere	reflex.cnrs.tr/cc	westermann_tul: ×	+	- 6	ø >
← → C	file:///C:/Pytho	on38/westermann_tula-w	aja1.html			ŵ		Ŧ	lır. 🗊 😐	1
1.2 Cognate Identification										
lijim-bwilim 54.4% (3	gnate sets dadiya 65.7% (38.1/58) 5 1/58) 6 1/57) 64.4% (40.6/63)	176 dijim-bwilim tu 44.4% (31/57) 63.5% (44.4% (40.6/63) 65.6% (56.7% (la waja 52.7/83) 51.0% (13.8/27) 44.0/67) 36.9% (7.7/21) 40.8/72) 32.8% (7.5/23)							
vaja 51.0% (13. tetails townload .tab how 10 v entries	8/27) 36.9% (7.7/21) 3	12.8% (7.5/23) 45.5% (Search:		
Item *	awak	dadiya mi	¢ dijim-bwilim	† tula	¢ waja	2	# lgs	1	# cognate sets	Ÿ
année	m têr	i*œl/tin	'nj₽y₽/tē	s*ātū/s*ār		4		4		
apporter	pīté	,		békén		2		1		
arbre										
	pūtó/tī	tin/tīyā	áŋ/rī:/té/riy	tīyāŋ∕tī:nī	söü/söüri	5		5		

vām

nō

kiyilâŋ

sübi/sùbi

sówż

pòpùlòi

kùndí

käntó

attendre

barbe

blanc

boire

bon

2

2

3

2

Example Inspect Cognate Judgment

🖥 Mail - harz	idhan	Darfur	movie 7 -	Google Translate	📑 maja	a_BiSources_	Majmû'ah-i ma	iqālā: 📑 Supp'	1_Materials	👫 Adamawa L	angu 🦉 Reflex - Re	ferenc	reflex.cnrs.fr/core	westermann_tula-1 \times	+	-	ø	×
$\leftarrow \rightarrow$	С		۵	file:///C:/Python38/	westermani	n_tula-waja1	I.html						80%	\odot	$\underline{\ast}$	lin 🗊 🤫	-	=
ow 10 ∨ ¢	ntrics Item			awak		dadiya		dijim-bwilim		tula	0	waja	0	# lgs	0 Si	narch: # cognate se	ets	0
sg POS			m		mi								2		1			_
nnée					j=æl/in		b)\$'y\$'	he	5*800	/s=ār			4		4			
pporter			ptté						biki	•			2		1			
rbre			pūtā/ff		tin/ttyà		ág/rī./	16/riy	tiyaq		sót/sótri		5		5			
rgent									kim	nir/kâmbûrî	ékén		2		3			
ttendre																		
d(x, y)	kāntā	yām																
käntö		3.910																
yām	3.910																	
Average	3.910	3.910																
SS(x, y)	kāntā																	
käntö		0.637																
yām		1.000	käntö						yām				2		1			
-Average	0.770	0.770																
Cluster 2	dembers	Internal Edges																
0-1	(kintó, yām)	0.637, 0.903																
From To	Exten	al Edge																
core: 0.770,	# cluster	: 1																
arbe									sübü	sùbè	sówż		2		1			
lanc									m*ē		pöpülök		2		2			
nire			44						70				3		2			

Towards Deep Cognate Detection

- Shallow cognates provide evidence for (shallow) subgrouping
 - Factor out the most recent **subgroup**
 - **Reconstruct** its proto-language via *regular correspondences* found in the shallow cognates
 - Redo (shallow) **cognate detection**, this time with the proto-language of the recognized subgroup instead of the surface forms
- Repeat

This way, deep cognates may be recognized iff surface divergent surface forms become similar by a series of nested regular correspondences

Subgrouping and Reconstruction: Some Heuristic Approaches

- Subgrouping: A greedy solution
 - For every meaning, guess which cognate set is the oldest
 - The cognate set shared across the *deepest divide* is most likely the oldest
 - Thus this is the retention, the other cognate sets innovations
 - Once innovations are distinguished from retentions, we can test for the subgroup best selected for by shared innovations
- **Reconstruction:** A greedy solution
 - In every cognate set, try one of the forms as ancestral
 - This gives equations to all modern forms
 - From such equations collect a set of potential sound changes
 - A potential sound change can be tested for significance across all cognate sets
 - Majority vote + play back of significant sound changes provide the reconstruction

Cognate Matrix to Most Demarcated Terminal Subgroup

- 1. For every meaning, guess which cognate set was present in the proto-language
 - Heuristic: the value cognate set across the deepest divide is the most likely value for the proto-language
- 2. Throw away the retention & singleton isoglosses
- 3. Find the Most Demarcated Terminal (MDT) subgroup
 - Heuristic: The MDT subgroup is the subset with the highest amount of supportive innovation isoglosses and the least amount of conflicting innovation isoglosses
- 4. Replace the languages of the MDT subgroup with its protolanguage

Retention vs Innovation

• Which of A, B, C, D are innovations/retention?

	Agei [aif]	Aiku [ymo]	Aro [tei]	Bragat [aof]	Chinapeli [van]	
two	Α	В	Α	С	Α	

• Across **all** 184 meanings, the overall cognate distances between the languages are

	Agei [aif]	Aiku [ymo]	Aro [tei]	Bragat [aof]	Chinapeli [van]
Agei [aif]	0.0	0.669	0.689	0.701	0.644
Aiku [ymo]	0.669	0.0	0.672	0.666	0.660
Aro [tei]	0.729	0.672	0.0	0.655	0.678
Bragat [aof]	0.701	0.666	0.655	0.0	0.685
Chinapeli [van]	0.644	0.660	0.678	0.685	0.0

- The deepest divide (0.729) is between Aro and Agei which both share the *A* cognate
- Let us therefore guess that *A* is a retention in this case
- That makes *B* and *C* innovations

Innovations to MDT Subgroup

- Throw away retention isoglosses & singleton innovations
- We are now left with a list of *innovation* isoglosses that select various subsets of the languages at hand
- The MDT should be one which has the most unequivocal support isoglosses (the most supporting innovations and the least conflicting innovations)
- Heuristic: For each subset *S* with at least one innovation
 - Do a Fisher Exact Test (FET) to measure how well each innovation *i* selects *S*

$$\textit{Subgroup}(S,I) = \prod_{i \in I}\textit{FET}(S,I) = \prod_{i \in I} \sum_{k \ge |S \cap i|} \frac{\binom{|S|}{k} \binom{|L \setminus S|}{|i| - k}}{\binom{|L|}{i|}}$$

- Check if it beats what can be expected by random
- Check that it doesn't have a more recent subgroup within it
- If there is *S* that beats random and has no more recent subgroup within it, *S* is the MDT

Reconstruct the MDT Subgroup Proto-Language

• Suppose the Most Demarcated Terminal subgroup is

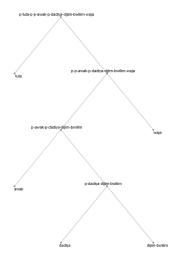
$$S = \{L_1, L_2, L_3\}$$
 $\overbrace{L1 \ L2 \ L3}^{S} \ ... \ L10$
 $M1 \ A \ A \ B \ C \ ... \ B$
...

- For each meaning
 - Determine which cognate to project to proto-S:
 - Project the most common (in *S*) cognate set to the proto-language, e.g., for meaning M1 project cognate set *A* to proto-S
 - In case of a tie, e.g., M2, prefer the cognate set (here B) which is found outside *S*
 - Reconstruct the form for that cognate in proto-S *See next slides*

Collecting Potential Sound Changes

- Given a set of forms *x*, *y*, *z*, ...
- Assume the proto-sound and proto-condition for every sound change is preserved in at least one modern form
- Then the equations
 xx → *x*, *xx* → *y*, *xx* → *z*, *xy* → *x*, *yy* → *z*, ... etc encompass all relevant potential sound changes
- E.g. with {*varm*, *worm*, *warm*}, the equations

Ancestral		Modern	Potential sound change(s)
varm	\rightarrow	worm	v > w, $a > o$, $v - > w -$, $Ca > Co$, .
varm	\rightarrow	warm	$v > w, v - > w -, \dots$
worm	\rightarrow	varm	w > v, $o > a$
worm	\rightarrow	warm	o > a

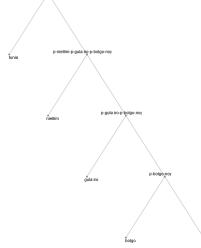

• • •

• I experimented with all uni- and bigram sound changes

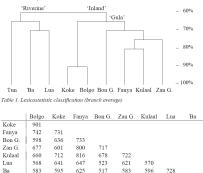
Testing Potential Sound Changes

- Reverse-apply the sound change to *all* words
- Check how much the edit distance to its cognates improved/worsened ("gain")
- If the gain is better than random accept the sound sound change
 - Permutation tests (many variants) can represent the null hypothesis
 - Control for multiple testing of sound changes, e.g., if 560 potential sound changes are checked, an accepted sound change must be better than 560 random ones

Example: Tula-Waja



Tentatively, I assume a Tula (core) group consisting of Tula, Dadiya, and Bangwinii. Ma and Yebu $\int =$ Awak — HH] possibly form their own branch to it. Tso on the one hand and Cham [= Dijim-Bwilim — HH], on the other hand appear to be earlier off-shoots from the main group. Unclear is the position of Waja, it seems to be the only member of a distinct branch. (Kleinewillinghöfer 2014b:2)


- Quite different at face value
- Less different under the hood and in the details

Example: Bua

p-tunia-p-niellim-p-gula iro-p-bolgo-noy

Boyeldieu et al. (2018:60)

- Position of Niellim [= Lua] different
- Lexical similarity matrices quite similar

Tun

582 636 627 553 615 607 629 652

Table 2. Lexicostatistics: similarity matrix¹²

Discussion

- In the present conceptualization
 - Subgrouping needs cognate information
 - Cognate detection is dependent on subgrouping
- In the present approach, this is done in a greedy see-saw manner (CD1, SG1, CD2, SG2, ...)
- Why not go Bayesian?

Search space is prohibitive already with the tree topology, let alone with branch lengths, cognates judgment and regular sound changes intertwined. Heuristics needed to control the search space in Bayesian formulations. Preferable from a linguistic perspective to have more transparent heuristics than those.

Conclusion

- Arguments to separate shallow and deep cognate detection
- Good hope that shallow cognate detection can be done, even without recourse to thresholds
- Deep cognate detection adressed via iterative subgrouping and reconstruction
 - Heuristic subgroup detection
 - Heuristic discovery of sound changes
 - Heuristic iterated reconstruction
- Transparent, so hopefully of use to "real" historical linguists working on Adamawa or any other larg-ish set of languages with open classification questions

- Boyd, R. (1989). Adamawa-ubangi. In Bendor-Samuel, J., editor, *The Niger-Congo Languages: A Classification and Description of Africa's Largest Language Family*, pages 178–215. Lanham, MD: University Press of America.
- Boyeldieu, P., Kastenholz, R., Kleinewillinghöfer, U., and Lionnet, F. (2018). The bua group languages (chad, adamawa 13): A comparative perspective. In Kramer, R. and Kießling, R., editors, *Current approaches to Adamawa and Gur languages*, volume 34 of *Afrika und Übersee: Beiheft*, pages 53–126. Cologne: Rüdiger Köppe.
- Ellison, T. M. (2007). Bayesian identification of cognates and correspondences. In *Proceedings of Ninth Meeting of the ACL Special Interest Group in Computational Morphology and Phonology*, SigMorPhon '07, pages 15–22. Association for Computational Linguistics, Stroudsburg, PA, USA.
- Güldemann, T. (2018). Historical linguistics and genealogical language classification in africa. In Güldemann, T., editor,

African Languages and Linguistics, pages 58–444. Berlin: DeGruyter Mouton.

Kleinewillinghöfer, U. (2014a). Adamawa. Paper presented at the Linguistisches Kolloquium des Seminars für

Afrikawissenschaften, Humboldt-Universität zu Berlin, 4 November, 2014.

Kleinewillinghöfer, U. (2014b). Tula-waja group. Ms.

Kleinewillinghöfer, U. (2020). Adamawa. In Vossen, R. and Dimmendaal, G. J., editors, *The Oxford Handbook of African Languages*, pages 220–230. Oxford: Oxford University Press.
Kondrak, G. (2009). Identification of cognates and recurrent sound correspondences in word lists. *Traitement Automatique des Langues*, 50(2):201–235.

- List, J.-M. (2014). *Sequence comparison in historical linguistics*. PhD thesis, Düsseldorf: Heinrich Heine University.
- List, J.-M., Greenhill, S. J., and Gray, R. D. (2017). The potential of automatic word comparison for historical linguistics. *PLOS ONE*, 12(1):1–18.

- List, J.-M., Walworth, M., Greenhill, S. J., Tresoldi, T., and Forkel, R. (2018). Sequence comparison in computational historical linguistics. *Journal of Language Evolution*, 3(2):130–144.
- Mortensen, D. R., Littell, P., Bharadwaj, A., Goyal, K., Dyer, C., and Levin, L. (2016). Panphon: A resource for mapping ipa segments to articulatory feature vectors. In *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers*, pages 3475–3484. The COLING 2016 Organizing Committee.
- Segerer, G. (2016). Reflex: la reconstruction sans peine. *Faits de Langues*, 47:201–214.
- St Arnaud, A., Beck, D., and Kondrak, G. (2017). Identifying cognate sets across dictionaries of related languages. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 2519–2528. Association for Computational Linguistics.

Steiner, L., Stadler, P. F., and Cysouw, M. (2011). A pipeline for computational historical linguistics. *Language Dynamics & Change*, 1:89–127.